Kopfgeld

  • DARK PLAY IN AN AI BASED INDIVIDUALIZED MONEY GAME
Beitrag in Sammelband (peer-reviewed)

Autor*innen

Margarete Jahrmann , Thomas Brandstetter , Glasauer, Stefan

Herausgeber*innenschaft

Koenig N, Denk N, Pfeiffer A, Wernbacher T, Wimmer S.

Ort, Datum

Wien, Österreich, Politischer Bezirk Krems, NO, Austria, 01. Januar 2024

Schlagwörter

Game Studies

ISBN/ISSN/ISMN, DOI

text

The exemplary low interaction game KOPFGELD, developed in 2023 by Margarete Jahrmann and Stefan Glasauer and first exhibited in a show on the topic of cash at Re:Publica Berlin (RP23.-) defines the price of a player’s face by using the latest developments in AI image generation and face recognition systems.In a theoretical framework we reflect KOPFGELD as a radical art game on “non-consensual play” by AI systems with human entities. In playful settings actual face recognition directly capitalizes biometric data. The emerging AI systems use human play with AIfor training of their own systems and turn interaction and attention into cash. Using methods of playful artistic research (LUDIC method), the artistic low interaction game KOPFGELD furthers the understanding of non-consensual play and so-called “dark patterns of game design”. Situating the installation in the context of idle/low interactions and the artistic tradition of “dark play”, we show how actual games, exemplified by a mobile racing game, provide a dark mirror in which we can see glimpses of a future of pervasive gamification driven by non-human players: “you are being played”. Keywords:art, non-consensual play, dark patterns of game design, AI, low interaction games

Band, Seiten

171-188

Aktivitätenlisten

Mediendateien

  • Bild
  • Bild
  • Bild
Veröffentlicht Von: Margarete Jahrmann | Universität für Angewandte Kunst Wien | Veröffentlicht Am: 10. Oktober 2024, 14:39 | Geändert Am: 10. Oktober 2024, 14:39