2023S
Andrea Klaura
Institut für Kunst und Technologie, Coding Lab
2024S, Vorlesung und Übungen (VU), 2.0 ECTS, 2.0 SemStd., LV-Nr. S04593
Ongoing course documentation: https://tantemalkah.at/machine-learning/2024/
This course is the practical/experimental companion to Paul Feigelfeld's seminar on the theory and history of Machine Learning. While it is not a formal requirement to also attend this other course, we highly recommend to jointly attend both of those two courses.
Learning goals:
After completion of this course you will be able to
* Set up and train simple machine learning models based on the Python programming language* Analyse data sets in terms of their usability for machine learning processes
* Pre-process and prepare data sets for their use in training machine learning models
* Critically reflect on the techno-social and infrastructural requirements for successful machine learning applications
* Evaluate and assess machine learning processes in terms of risk and ethical considerations
Course outline:
The course features three major parts we will focus on:
1. Intro & linear regression models: in the first weeks of the course we will familiarise ourselves with the basic setup and the scripting basics we need to create and experiment with simple linear regression models with Python on your own computing device.
2. Recommender systems: after we gained some familiarity with creating and working on linear regression models, we focus on recommender systems and creating and experimenting with machine learning models that can be used in recommender systems
3. Project work & open experimentation: the final weeks of the course aim at defining specific (prototype) projects, which the attendees will work on either individually or in groups, as part of their final exercise in this course
Requirements:
There is no explicit requirement to attend this course. Pre-existing mathematical and programming knowledge will help, but the course is designed to teach you all the technological skills from scratch. A familiarity with your own device (see BYOD policy below) and how to install software should be given.
ECTS breakdown:
2 ECTS = 50 hours
* 18 hours: scheduled teaching sessions
* 12 hours: exercises alongside the teaching sessions
* 20 hours: final project
Grading will be based on:
* 40%: Attendance & active participation
* 30%: Coding exercises
* 30%: Final project
BYOD policy:
Please bring your own device (ideally a laptop computer), to get most out of the course, as part of the course sessions will facilitate hands-on exercises in coding. In case you do not have a laptop or cannot bring one, it is possible to team up with another person with laptop. In that case you will have to do more work outside the course, in order to submit the exercises.
machine learning, AI, coding, programming, python, non-linear thinking, algorithmic irrationality
11. März 2024, 14:00–18:00 Seminarraum 35 , „Common kick-off session with SE Machine Learning“ (Vorbesprechung)
25. März 2024, 14:00–18:00 Seminarraum 35 , „optional session for coding newcomers“
22. April 2024, 14:00–18:00 Seminarraum 35
06. Mai 2024, 14:00–18:00 Seminarraum 35
03. Juni 2024, 14:00–18:00 Seminarraum 35
10. Juni 2024, 14:00–18:00 Seminarraum 35
17. Juni 2024, 14:00–18:00 Seminarraum 33 , „Attention: switching to a different seminar room“
Von 05. Februar 2024, 00:00 bis 15. März 2024, 23:42
Per Online Anmeldung
Transformation Studies. Art x Science (Bachelor): Focus! Transformation Areas: Digital Transformation 162/040.10
TransArts - Transdisziplinäre Kunst (Bachelor): Künstlerische und kunsttechnologische Grundlagen: Künstlerische und kunsttechnologische Grundlagen 180/002.01
Cross-Disciplinary Strategies (Master): Studienfelder 1-3: Studienfeld 2: Wissenschaft und Technologie 569/020.02
Design: Design und narrative Medien (1. Studienabschnitt): Technische Grundlagen: Technologie, Coding und Programmierung 576/104.25
Design: Design und narrative Medien (2. Studienabschnitt): Technische Grundlagen: Technologie, Coding und Programmierung 576/204.25
Bildende Kunst (2. Studienabschnitt): Technischer Kontext künstlerischer Praxis: Werkstätten 605/203.10
Bildende Kunst (2. Studienabschnitt): Technischer Kontext künstlerischer Praxis: frei wählbar aus technischer Kontext künstlerischer Praxis 605/203.80
Cross-Disciplinary Strategies (Bachelor): Wissenschaft und Technologie: Vertiefungs-/Anwendungsphase 700/002.20
Mitbelegung: nicht möglich
Besuch einzelner Lehrveranstaltungen: nicht möglich