Hands on Machine Learning

Andrea Klaura
Institut für Kunst und Technologie, Coding Lab
2023S, Vorlesung und Übungen (VU), 2.0 ECTS, 2.0 SemStd., LV-Nr. S04593

Beschreibung

Ongoing course documentation: https://tantemalkah.at/2023/machine-learning/

This course is the practical/experimental companion to Clemens Apprich's seminar on the theory and history of Machine Learning. While it is not a formal requirement to also attend this other course, we highly recommend to jointly attend both of those two courses.

Learning goals:

After completion of this course you will be able to

* Set up and train simple machine learning models based on the Python programming language* Analyse data sets in terms of their usability for machine learning processes
* Pre-process and prepare data sets for their use in training machine learning models
* Critically reflect on the techno-social and infrastructural requirements for successful machine learning applications
* Evaluate and assess machine learning processes in terms of risk and ethical considerations

Course outline:

The course features three major parts we will focus on:

1. Intro & linear regression models: in the first weeks of the course we will familiarise ourselves with the basic setup and the scripting basics we need to create and experiment with simple linear regression models with Python on your own computing device.
2. Recommender systems: after we gained some familiarity with creating and working on linear regression models, we focus on recommender systems and creating and experimenting with machine learning models that can be used in recommender systems
3. Project work & open experimentation: the final weeks of the course aim at defining specific (prototype) projects, which the attendees will work on either individually or in groups, as part of their final exercise in this course

Requirements:

There is no explicit requirement to attend this course. Pre-existing mathematical and programming knowledge will help, but the course is designed to teach you all the technological skills from scratch. A familiarity with your own device (see BYOD policy below) and how to install software should be given.

ECTS breakdown:

2 ECTS = 50 hours

* 18 hours: scheduled teaching sessions
* 12 hours: exercises alongside the teaching sessions
* 20 hours: final project

Prüfungsmodalitäten

Grading will be based on:

* 30%: Attendance & active participation
* 30%: Coding exercises
* 40%: Final project

Anmerkungen

BYOD policy:

Please bring your own device (ideally a laptop computer), to get most out of the course, as part of the course sessions will facilitate hands-on exercises in coding. In case you do not have a laptop or cannot bring one, it is possible to team up with another person with laptop. In that case you will have to do more work outside the course, in order to submit the exercises.

Schlagwörter

machine learning, AI, coding, programming, python, tensor flow, linear regression, recommender systems

Termine

02. März 2023, 12:30–14:00 Seminarraum 33 (Vorbesprechung)
09. März 2023, 12:30–14:00 Seminarraum 33 , „Setup & Python basics“
16. März 2023, 12:30–14:00 Seminarraum 33 , „Python basics recap, loops, functions“
23. März 2023, 12:30–14:00 Seminarraum 33 , „Reading and analysing .csv data sets“
30. März 2023, 12:30–14:00 Seminarraum 33 , „Pretty Plotting Pandas“
20. April 2023, 12:30–14:00 Seminarraum 33 , „Perceptrons in Python Practice“
27. April 2023, 12:30–14:00 Seminarraum 33 , „Getting into linear regression“
04. Mai 2023, 12:30–14:00 Seminarraum 33 , „Linear regression continued“
11. Mai 2023, 12:30–14:00 Seminarraum 33 , „Excursion to the E-Day“
25. Mai 2023, 12:30–14:00 Seminarraum 33
01. Juni 2023, 12:30–14:00 Seminarraum 33 (Gastvortrag: Sandra Stuhlhofer)
22. Juni 2023, 12:30–14:00 Besprechungsraum 17

LV-Anmeldung

Von 01. Februar 2023, 05:42 bis 02. März 2023, 12:23
Per Online Anmeldung

Transformation Studies. Art x Science (Bachelor): Focus! Transformation Areas: Digital Transformation 162/040.10

TransArts - Transdisziplinäre Kunst (Bachelor): Künstlerische und kunsttechnologische Grundlagen: Künstlerische und kunsttechnologische Grundlagen 180/002.01

Cross-Disciplinary Strategies (Master): Studienfelder 1-3: Studienfeld 2: Wissenschaft und Technologie 569/020.02

Cross-Disciplinary Strategies (Master): Wahlfächer: Freie Wahlfächer 569/080.80

Bildende Kunst (2. Studienabschnitt): Technischer Kontext künstlerischer Praxis: Werkstätten 605/203.10

Bildende Kunst (2. Studienabschnitt): Technischer Kontext künstlerischer Praxis: frei wählbar aus technischer Kontext künstlerischer Praxis 605/203.80

Cross-Disciplinary Strategies (Bachelor): Wissenschaft und Technologie: Vertiefungs-/Anwendungsphase 700/002.20

Mitbelegung: nicht möglich

Besuch einzelner Lehrveranstaltungen: nicht möglich